
Calculation of Static Third-Order Polarizabilities of Large Organic Molecules

B. H. Cardelino,*,†,§,| C. E. Moore,‡,§,| and D. O. Frazier‡

Spelman College, Atlanta, Georgia 30314, NASA George C. Marshall Space Flight Center,
HuntsVille, Alabama 35812, NASA Alliance for Nonlinear Optics, New Mexico Highlands UniVersity,
Las Vegas, New Mexico 87701, and NSF Center for Theoretical Studies of Physical Systems, Clark Atlanta
UniVersity, Atlanta, Georgia 30314

ReceiVed: NoVember 15, 1996; In Final Form: January 6, 1997X

We have implemented a procedure to calculate static electronic molecular third-order polarizabilities for large
molecules. The property is obtained semiempirically, using the finite-field formalism and either external or
implicit fields, based on structures optimized by semiempirical, ab intio, or molecular mechanics methods.
The numerical instability in the property is estimated, and various parameters can be modified to improve the
uncertainty. The procedure involves first the calculation of the valence electron contribution to the property
and then includes an estimate of the contribution from the electron cores.

1. Introduction

Materials with large third-order polarizabilities (γ) have
potential applications in optical switching for optical computing
or high-density optical recording.1 The most promising materi-
als are organic materials with large off-resonance nonlinear
susceptibilities which could be tailored into optoelectronic and
photonic devices.2-4 Theoretical guidance is highly desirable
prior to the synthesis of these materials but very accurate ab
initio calculations ofγ can only be performed on atoms or very
small molecules.5 Semiempirical methods, which intrinsically
account for electron correlation, are of interest in the study of
large molecules, although their accuracy has not been carefully
tested.6 Moreover, numerical precision has been determined
to be a concern in calculating third-order polarizability.7-8

The approach followed in this work is to obtain an optimized
geometry from either semiempirical, ab initio, or molecular
mechanics procedures and then to subject the molecule to a
variety of static fields using semiempirical techniques. This
provides information of polarization versus static field strength,
which can be analyzed to obtain the third-order polarizability
using the finite-field formulation, according to eq 1.

wherePq represents theqth component of the polarization,Fi
the ith component of the applied electric field,µ the permanent
dipole moment,R the linear polarizability,â the second-order
polarizability,γ the third-order polarizability, etc.
Kurtz, Stewart, and Dieter7 implemented a procedure for the

calculation of molecular hyperpolarizabilities using finite fields
within the semiempirical program MOPAC.9 In their approach,
an estimate of the uncertainty of a given calculation can be
achieved by comparing the results obtained from using both
the polarization and the energy (E) versus the static field
strength, since eq 2 also holds:

Axial equations for finite-field calculations based on energy were
originally derived by Bartlett and Purvis10 and nonaxial equa-
tions by Kurtz, Steward, and Dieter.7 Similar equations for
finite-field calculations based on polarization are given by
Williams11 and Kurtz, Stewart, and Dieter.7

In addition to the comparison ofγ from energy and
polarization calculations, Kurtz, Stewart, and Dieter7 utilize γ
terms related by symmetry (e.g., theγxxxxandγyyyyor theγxxzz
andγyyzzfor benzene) to evaluate the uncertainty. Subsequently,
the SCF convergence criterion can be made more stringent to
improve the precision of the calculation. In their work, energy
and polarization are obtained from MNDO12 or AM113 Hamil-
tonians within the MOPAC program.
Also based on the finite-field approach, utilizing the MNDO

Hamiltonian12 and the PM-3 parametrization,14Matsuzawa and
Dixon8 studied the third-order polarizabilities of C60 and C70.
For these large molecules, theγ values obtained using eq 1
showed significant dependence on the SCF convergence crite-
rion. We will summarize our approach and return to this point.
To address the problem of evaluating the precision of the

static γ values, we obtain a large number of calculations of
polarization versus field data, semiempirically. We assume that
the notationâijk andγijkl refers to polarization in theith direction,
for field components in thejth, kth and lth directions. In the
case of static field calculations, Kleinman symmetry implies
that the value of the tensor element is invariant to the interchange
of all indices. Nevertheless, one may concentrate on polariza-
tion along a given directioni, such that Kleinman symmetry
does not have to be assumed for interchange of the first index,
only for the indices corresponding to the field. Thus, the choice
of polarization (eq 1) as opposed to energy data (eq 2) is based
on the following: (a) the individual terms of second- and third-
order polarizability can be obtained without any assumption
about their Kleinman symmetry; (b) the polarization expansion
has one degree less in the field than the energy expansion. The
computational time required on these polarization versus field
calculations is not a concern since usually only the smaller
molecules (which run very fast) are the ones that require an
extremely large number of calculations.
The polarization versus field data are analyzed separately by

the program HYPER. The program performs polynomial
expansions of a number of degrees. These expansions are done
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without assuming Kleinman symmetry (except for that derived
from the interchange of field indices). This approach provides
us with a qualitative and a quantitative way of evaluating the
uncertainty. The qualitative way is done by comparing the terms
related through Kleinman symmetry by interchange of the first
index (e.g.,γxxyy andγyyxx); the quantitative evaluation of the
uncertainty is obtained by looking at the range of values obtained
for a given term for the polynomial expansions of various
degrees.
Once an estimate of the uncertainty is obtained, several

parameters can be changed in the calculations of polarization
versus field data to improve the uncertainty. Thus, we can
diminish the dependence on the SCF convergence mentioned
by Matsuzawa and Dixon.8 Using the example of C60 (with no
symmetry constraint), they obtained values of static valence
electronicγ of 2.61× 10-60 and 3.11× 10-60 C m4 V-3 for
SCF convergence criteria of 10-8 and 10-14, respectively, when
the expansion was performed on energy. When the expansion
was performed using polarization, the values they obtained
showed a large dependence on the SCF convergence criterion:
7.03× 10-60 and 1.82× 10-60 C m4 V-3 for 10-8 and 10-14,
respectively. By adjusting the parameters in the calculations
of polarization versus field data, and using a SCF convergence
criterion of 10-12, we obtained the value of (3.1( 0.3)× 10-60

C m4 V-3 for C60
15 (from a Taylor series), consistent with the

Matsuzawa and Dixon8 energy calculation for a SCF conver-
gence criterion of 10-14.
Previously, Chopra et al.16 utilized polynomial expansions

of odd powers ofF, for axial fields, up toF7, to check for
random fluctuations. They determined that 12 field strengths
were required for centrosymmetric molecules and 24 for non-
centrosymmetric molecules and also that large fields should be
sampled to extract nonlinear optical polarizabilities. Sim, Chin,
Dupuis, and Rice17 have analyzed results for the longitudinal
hyperpolarizability of p-nitroaniline using 20 electric field
strengths, fitted to various orders of polynomial on energy and
dipole calculations, and determined the standard deviation of
the polynomial fit.
The third-order polarizabilities of more than 200 molecules

have been surveyed by Matsuzawa and Dixon18,19 utilizing
semiempirical methods for structure optimization and finite-
field calculations based on energy and polarization. For most
of the molecules, no significant differences inγ were found
between these two approaches. In addition, it was determined
that these calculations would yield values within a factor of 3
of the experimental values. Hartree-Fock calculations for large

molecules have shown that the theory is accurate in determining
trends (Hurst, Dupuis, and Clementi;20 Daniel and Dupuis21),
but calculations ofâz for p-nitroaniline at the Møller-Plesset
(MP2) level of approximation and based on the finite-field
approach have shown the importance of electron correlation
effects (Sim, Chin, Dupuis, and Rice17). It was subsequently
shown that density functional theory (DFT) methods can predict
hyperpolarizabilities with an accuracy comparable to the MP2
level (Matsuzawa and Dixon22).
Since semiempirical calculations intrinsically contain electron

correlation because of the parametrization with experimental
results and since DFT methods are computationally less
expensive that other correlated calculations, comparisons be-
tween these two approaches are of interest. Matsuzawa and
Dixon have performed such comparisons for third-order polar-
izabilities of 4-aminoindoaniline.23 In addition, Matsuzawa and
Dixon24 compared structures of phenylpolyacetylenes obtained
from semiempirical and DFT methods, and they calculated their
third-order polarizabilities semiempirically. A DFT calculation
on the third-order polarizability of C60 (Matsuzawa and Dixon25)
was of the same magnitude as the semiempirical calculations
already mentioned (refs 8 and 15). DFTγ calculations on small
molecules and urea were found to be in good agreement with
experimental values (Dixon and Matsuzawa26).

2. Computational Procedure

The procedure involves two parts: calculation of the valence
electron contribution to the property with its uncertainty, and
estimation of the core electron effect. The valence electron
contribution is obtained from the following sequential steps:
(1) a calculation for an optimized geometry; (2) multiple
calculations of polarization versus static field data using a
semiempirical Hamiltonian; (3) determination of all required
tensor elements from polynomial expansions of various degrees;
(4) qualitative and quantitative evaluation of the uncertainty as
determined by pairs of elements related through Kleinman
symmetry and by the variability of the third-order coefficient
in the various polynomial expansions, respectively; (5) modi-
fication of several parameters on part 2 to minimize the
uncertainties. The core contribution is estimated using additive
corrections obtained by comparing our results with ab initio
calculations on small organic molecules.
(a) Optimized Geometry. Optimized geometries may be

obtained from semiempirical, ab initio, or molecular mechanics
calculations. As an example, Table 1 shows calculations of

TABLE 1: Mean Valence Electron Contribution (γ) to the Third-Order Polarizability of Porphyrin (Units: 10 -61 C m4 V-3)

calculation ofγ

implicit field/minimum
no. of points based on

optimized geometry
external field/
polynomial fit

implicit field
polynomial fit energy polarization

MM3 (C2V)a 19.00( 0.03 18.99( 0.03 19.02 19.13
AM1 (C2V) 19.76( 0.04 19.75( 0.03 19.79 19.86
HF/STO-3g (C2V) 16.59( 0.02 16.57( 0.02 16.61 16.66
HF/4-31g (C2V) 17.35( 0.04 17.33( 0.03 17.37 17.61
HF/6-31g** (C2V) 17.35( 0.03b 17.33( 0.03b 17.37 17.48
B3LYP/6-31g* (D2h)c 16.9( 0.3 16.9( 0.3 16.99 17.22
LDFT (D2h)d 15.0( 0.3 15.0( 0.3 15.16 15.41
other calculations (D2h)e

BLYP/DNP+ 13.54
MNDO 23.13
LDFT (BH/DNP) 8.62
LDFT (BH/DNP+) 11.27

a Structure calculation by Timofeeva.27 b This calculation is used to extract the values for Table 2.cDFT geometry optimization with energy)
-989.6 au.dStructure from Matsuzawa, Ata, Dixon, (Table 2, ref 33). Energy) -981.4 au.eThird-order polarizability calculations from Matsuzawa,
Ata, Dixon (Table 5, ref 33).
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the mean valence electron contribution toγ for porphyrin
structures optimized by all of these methods. The first geometry
corresponds to a structure optimized by Timofeeva27 using
MM3.28 The second geometry was done semiempirically, using
MOPAC29 and the AM1 Hamiltonian.13 The next three
structures are ab initio calculations at the Hartree-Fock level,
utilizing different basis sets and GAUSS94W.30 The next two
entries in Table 1 correspond to two approaches to density
functional theory (DFT). The first one uses hybrid functionals
(B3LYP; refs 31 and 32) and was obtained using the GAUSS
program.30 The second one was performed by Matsuzawa, Ata,
and Dixon33 using local functionals. All optimized structures
have aC2V symmetry except for the DFT calculations, which
areD2h. Our DFT optimization resulted inD2h symmetry from
an initial Cs input.
In the upper portion of Table 1 we show four types of

calculations ofγ, which will be discussed in sections b and c.
The associated uncertainties inγ for the first two columns will
be described in section d.
Several important points may be made with respect to

optimized geometries using the example of Table 1. For the
first six rows, the choice of geometry does not have a dramatic
effect on theγ values, since all numbers are within 15%. The
seventh row corresponds to an energy somewhat higher than
the sixth structure (-989.6 au versus-981.4 au). In addition,
the uncertainties inγ for the two DFT structures are 1 order of
magnitude larger than for the other calculations. Since the
calculations of polarizability are performed semiempirically and
the preferred structure for semiempirical calculations isC2V, we
believe that the increase in uncertainty is due to the change in
symmetry. Finally, for a given geometry, the first three columns
show the same values within their uncertainty; the calculation
using an implicit field and a minimum number of points based
on polarization gives about 1% higher values.
(b) Calculations of Polarization versus Static Field Data

Using a Semiempirical Hamiltonian. The polarization versus
static field information is obtained from semiempirical calcula-
tions. In our case, we have selected the AM1 Hamiltonian13

implemented within the MOPAC program.29 A method of
incorporating a quasi-homogeneous static external field was
developed by Dewar and Stewart34 to calculate first-order
polarizabilities (R). The method was subsequently modified by
Kurtz, Stewart, and Dieter7 to obtain second- and third-order
polarizabilities, by inserting an implicit static field within the
Hamiltonian, as outlined by Williams.11 In both of these
calculations, the properties are obtained using a minimum
amount of points. We have modified the corresponding
subroutines of the MOPAC program (POLAR and DIPOLE)
in order to obtain a large number of points and to be able to
modify the parameters that create the static fields.
As has been described elsewhere,34 the external static fields

are created using four collinear charges: two positive and two
negative of magnitudesQ andQ/2 (shaped electric field). The
Q charges are placed at a distanceL from the coordinate origin
and theQ/2 charges at a distance 2-1/3L from the origin. This
creates a field of magnitude about 6Q/L2 V Å-1 at the origin
(for Q in atomic units andL in Å). Thus, the following
parameters can be modified in a compromise between numerical
stability and time cost: number of static field calculations,
magnitude ofQ, magnitude ofL, magnitude of the fields, and
field increments. In the case of implicit fields (refs 7 and 11),
the following parameters can be modified: value of the largest
fields, field decrements, and number of field calculations.
(c) Polynomial Expansions of Polarization versus Static

Field Data. We have developed the program HYPER to

determine all tensor elements required to calculate the polar-
izability properties, based on polynomial expansions of polariza-
tion versus static electric field data, according to eq 1. The
average value (scalar part) of the third-order polarizability in
isotropic systems is given by

We treat separately the cases in which the external fields have
either one or two components. The one-component fields give
all Rqi, âqii, andγqiii terms, whereq corresponds to the direction
of polarization andi to the direction of the field. Calculations
with two-component fields give theâqij, γqijj, andγqiij terms,
whereq corresponds to the direction of polarization, andi and
j to the components of the field.
We have chosen the magnitude of the components in two-

dimensional fields to be equal, similarly to Williams.11 Two
separate calculations for polarization versus field strength are
then performed: one corresponds to fields in which the two
components have the same sign, and the other corresponds to
fields in which the two components have opposite signs. When
both field components have the same magnitude and sign, the
polarization can be expanded as follows:

When the two components of the field have opposite signs, the
polarization may be expanded in terms of eitherFi or Fj.

The second-order coefficients of eqs 5 and 6 are the same.
Thus, subtraction of the second-order coefficient of either eq 5
or 6 from the second-order coefficient of eq 4 results in a direct
calculation of 4âqij. Since Kleinman symmetry holds for static-
field polarizabilities,âiij terms should be equal toâjii terms,
andâjij terms should be equal toâijj terms. To test adherence
to Kleinman symmetry involving interchange of the first index,
terms of the typeâijj andâjij may be obtained from calculations
involving a one-component field and a two-component field,
respectively.
The third-order coefficients of eqs 5 and 6 have opposite

signs. Summation of the third-order coefficients from eqs 4
and 5 results in 2γqiii + 6γqijj. A similar summation using eqs
4 and 6 results in 2γqjjj + 6γqiij. On the other hand, subtraction
of the third-order coefficient of eq 5 from the third-order
coefficient of eq 4 results in 2γqjjj + 6γqiij. A similar subtraction
using eqs 4 and 6 results in 2γqiii + 6γqijj. Consequently,γiijj
terms may be obtained from eq 4 plus eq 5 or eq 4 minus eq 6,
using polarization values alongi; γjiij terms may be obtained
from eq 4 minus eq 5 or eq 4 plus eq 6, using polarization
values alongj. Since Kleinman symmetry holds for static field
calculations, the two types of terms (γiijj and γjiij ) should be
equal. In summary, all terms of the typeγiiii from eq 3 may be
obtained from the calculations with external fields along only
one direction; terms of the typeγiijj andγjiij may be obtained
from a summation or a subtraction of the third-order coefficients
of eqs 4 and 5 or 6; and adherence to Kleinman symmetry can

γ ) (1/5)(γxxxx+ γyyyy+ γzzzz+ γxxyy+ γxxzz+ γzzxx+
γyyxx+ γyyzz+ γzzyy) (3)

Pq ) µq + (Rqi + Rqj)Fi + (âqii + âqjj + 2âqij)Fi
2 +

(γqiii + γqjjj + 3γqijj + 3γqiij)Fi
3 + ... (4)

Pq ) µq + (Rqi - Rqj)Fi + (âqii + âqjj - 2âqij)Fi
2 +

(γqiii - γqjjj + 3γqijj - 3γqiij)Fi
3 + ... (5)

Pq ) µq + (Rqj - Rqi)Fj + (âqjj + âqii - 2âqij)Fj
2 +

(γqjjj - γqiii + 3γqiij - 3γqijj)Fj
3 + ... (6)
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be checked by solving for those terms independently. The
degree of adherence may be used to evaluate the uncertainty of
the calculation.
(d) Evaluation of the Uncertainties. The evaluation of the

uncertainty of the calculation may be achieved by performing
polynomial expansions of variable degrees. In the present
calculations, we perform expansions of orders 4-18. The
variability of the coefficients in the various polynomial expan-
sions determines its uncertainty. In addition, we can qualita-
tively evaluate the numerical instability by looking at pairs of
elements related through Kleinman symmetry and involving
permutation of the first index.
As an example, Table 2 shows values of individualγ terms

for porphyrin. The structure of porphyrin was obtained by ab
initio techniques using 6-31G** basis sets. Table 2 shows the
variability of the terms with polynomial expansions of orders
4-18. From the range of values obtained for the averageγ
(eq 3) performing polynomial expansions from orders 4-18,
we estimate the numerical uncertainty of the calculation as
simply half of the spread. The top portion of Table 2 includes
values obtained from collinear polarization and fields along the
axes (iiii terms). The lower portion of the table includes those
terms that are related through Kleinman symmetry by permuta-
tion of the first index (iijj /jjii pairs). These values were
calculated by looking at polarizations alongi andj, respectively,
and then performing the sums and subtractions of the third
coefficients from calculations with the field components equal
in magnitude and sign or equal in magnitude and opposite in
sign.
The molecule is planar and located on thexy plane; itsC2

axis has been chosen to be along they axis. Thus, thezzzz
term should be null. Comparison of thezzzzterm from external
field and implicit field calculations show that this is true to the
second and third decimal place, respectively. The similarity
between thexxxxandyyyy terms responds to the closeness of
the porphyrinC2V structure to aD2h. Within expansions 8-18,
the variability resides on the second and third decimal places
for the external field and implicit field calculations, respectively.

The quality of the calculation can be evaluated explicitly by
comparing the terms shown in the lower portion of Table 2.
The largexxyy/yxxypair shows adherence to Kleinman sym-
metry to the third decimal place for expansions 8 and 10 of the
external field calculation and for expansions 8-16 of the implicit
field calculation. The smaller pairs (xxzz/zxxzand yyzz/zyyz)
also clearly show adherence to Kleinman symmetry to the third
decimal place for expansions 8-14 of the implicit field
calculation. Thus, adherence to Kleinman symmetry can be
used to determine the optimum degrees of polynomial expan-
sion.
(e) Modification of Parameters for the Polarization versus

Static Field Data. As was described in part d, several
parameters in the polarization versus static field calculations
can be modified in order to improve the numerical uncertainty
on the calculations. The larger the number of static field
calculations, the more precise the polynomial fits are; in the
case of external fields, the magnitudes ofQ andL have to be
sufficiently large such that the field is homogeneous, for all
practical purposes, within the volume occupied by the molecule;
for both external and implicit fields, the magnitudes of the fields
have to be such that the polynomial fit can detect the cubic
curvature but should not be so large as to compete with the
molecular internal fields; finally, smaller field increments can
enhance determination of the cubic curvature.
In the case of external fields, once a value ofQ is selected,

we obtain the different values of static field by changing the
distances of the charges to the coordinate origin. We have tested
field increments from 0.001 to 0.05 V Å-1, maximum fields of
0.5-2.0 V Å-1; Q values of 500-30 000 au; and minimum
distance for the smaller charges to the origin of about 50 and
400 Å and for the larger charges to the origin of about 63 and
504 Å. Summarizing, we have found that the conditions can
be circumscribed to three molecular sizes: less than 15 atoms,
between 15 and 50 atoms, and larger than 50 atoms. For the
first group, we required larger values of maximum fields and
smaller increments, thus obtaining a large number of data points
for the polynomial expansions and some fields sufficiently large

TABLE 2: Third-Order Polarizability Terms for Porphyrin, as a Function of Order of Polynomial Expansion (Porphyrin
Hartree-Fock Structure Using 6-31G** Basis Set) (Units: 10-61 C m4 V-3)

field alongx field alongy field alongzpolynomial
expansion external implicit external implicit external implicit

4 30.939 30.979 31.089 31.130 0.010 0.002
6 26.008 26.056 28.851 28.906 0.017 0.002
8 26.321 26.383 28.965 29.040 0.022 0.001
10 26.302 26.377 28.933 29.032 0.028 0.003
12 26.283 26.373 28.907 29.028 0.034 0.002
14 26.280 26.380 28.885 29.035 0.039 0.002
16 26.244 26.372 28.852 29.035 0.044 0.007
18 26.194 26.355 28.815 29.045 0.053 0.010

Kleinman Relationships

4 6 8 10 12 14 16 18

External Fields
xxyy 13.749 15.473 15.340 15.322 15.312 15.298 15.301 15.292
yxxy 15.828 15.246 15.340 15.322 15.326 15.318 15.311 15.276
xxzz -0.619 0.290 0.237 0.269 0.293 0.319 0.357 0.390
zxxz 0.131 0.126 0.122 0.119 0.115 0.119 0.113 0.108
yyzz -0.133 0.286 0.282 0.317 0.352 0.388 0.426 0.443
zyyz 0.173 0.166 0.162 0.160 0.157 0.157 0.155 0.151

Implicit Fields
xxyy 13.755 15.488 15.361 15.351 15.343 15.342 15.341 15.336
yxxy 15.836 15.259 15.356 15.351 15.341 15.341 15.339 15.322
xxzz -0.668 0.213 0.131 0.135 0.134 0.128 0.122 0.120
zxxz 0.135 0.133 0.132 0.131 0.129 0.133 0.129 0.125
yyzz -0.184 0.204 0.168 0.171 0.175 0.181 0.180 0.140
zyyz 0.176 0.172 0.172 0.171 0.171 0.172 0.170 0.167
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to be able to capture the small values ofγ; for the middle size
molecules, maximum fields of 0.7 V Å-1 were satisfactory, with
decrements of 0.05 V Å-1 in the values of the fields; the main
concern in the last group was to create the fields using charges
very distant, thus with very largeQ such as 30 000 au. In the
case of implicit fields, we have utilized the same maximum
fields and decrements required by the external field calculations.
The first two columns in Table 1 and all calculations in Table
2 for porphyrin were done using maximum fields of 0.7 V Å-1

and decrements of 0.05 V Å-1. The last two columns in Table
1 were performed utilizing the default fields of the MOPAC
program.29

We can summarize a comparison between the calculations
using external fields and implicit fields. Utilizing Table 1 as
an example, if the right parameters are selected, the choice of
external or internal field does not make much of a difference.
A small difference is seen between the use of energy versus
polarization utilizing implicit field and a minimum number of
points. The advantage of performing polynomial fits of variable
orders is that it provides a handle to optimize the parameters
for the calculation. Comparison of individual terms, such as
thezzzzterm in porphyrin and particularly comparison between
terms related through Kleinman symmetry (such as thexxzz/
zxxzandyyzz/zyyzpairs) clearly show that the best calculations
are those with implicit fields and polynomial expansions of
orders 8-16, given the number of points utilized (29 for each
polynomial fit). Nevertheless, the values of the property
obtained by either method (using external fields or implicit
fields) are very similar. However, the use of external fields
may give the option of performing calculations biased toward
a certain direction, in which case eq 1 should include field
gradients to account for the inhomogeneity of the field.
(f) Estimates of the Core Contributions. There are four

factors that affect comparison between our calculations and
experimental values: dispersion effects, since the measurements
are taken under dynamic electric fields; bulk effects, since most
of the measurements are taken in the liquid phase or in solution;
different definitions of applied electric field, local electric field,
and polarization;35 and core effects, since our semiempirical
Hamiltonian only includes valence electrons.
Comparisons between ab initio calculations and our valence-

electron calculations were used to obtain core effects. The core
effects selected are additive corrections, similar to the atomic
corrections of Dewar and Stewart34 for linear polarizabilities.
It may be argued that the difference between ab initio calcula-
tions (utilizing large basis sets) and our semiempirical calcula-
tions (utilizing minimal basis sets) includes not only core effects
but also basis set effects. Comparison between ab initio
calculations with and without nonpolarizable effective core
potential could serve to evaluate the actual importance of the
core contributions. Nevertheless, since our interest is in
performing hyperpolarizability calculations semiempirically, at
this instance we will utilize a loose meaning for the term “core
contributions”, with the understanding that it may include also
basis set effects.
Table 3 shows values ofγ (static) on hydrocarbons, from ab

initio (compiled by Shelton and Rice6) and our calculations.
The difference between these two values was correlated to the
number of carbon and hydrogen atoms. Multiple and linear
regressions with an independent term or forced through the
origin were compared. In particular, a multiple regression on
the number of carbon and hydrogen atoms gave a value for
hydrogen 10 times smaller than for carbon, and an error 3 times
larger than the coefficient. The best fit obtained was for a linear
regression on carbon atoms, forced through the origin. The

correlation was 0.97, giving a carbon core effect of (0.32(
0.01)× 10-61 C m4 V-3.
Figure 1 shows the correlation between the ab initio values

and our values with and without core effects. From a least-
squares regression, the correlation for the former values is 0.97,
with a slope of 0.98( 0.12. Even though the core effects are,
for most of the hydrocarbons selected, considerably larger than
the valence contributions, one can see from the figure that, as
soon as the molecules become larger and with more conjugation,
the effect of the valence contribution is extremely important.
This is depicted by the dramatic difference between C6H6

(benzene) and C6H8 (1,3,5-hexatriene), both with the same core
contribution.
Once more ab initio data become available, similar analyses

could be performed to obtain core corrections with other atoms.
As a first approximation, from a comparison for ammonia, we
obtained a core correction for nitrogen of 0.47× 10-61 C m4

V-3; from a comparison with water, a core correction for oxygen
of 0.10 × 10-61 C m4 V-3; and from chloroform, a core
correction for chlorine of 0.25× 10-61 C m4 V-3.
(g) Comparison with Experimental Values. Once core

effects and differences in definitions have been accounted for,
there are also two factors that may affect the comparison
between our values and the experimental measurements: disper-
sion effects and bulk effects. We have chosen four sets of data

TABLE 3: Comparison between ab Initio and
Semiempirical Calculations on Hydrocarbons (Units: 10-61
C m4 V-3)

present calculationb

molecule ab initioa valence contribution with core effects

CH4 0.194 -0.0042( 0.0013 0.32( 0.01
C2H2 0.552 0.0188( 0.0002 0.66( 0.02
C4H2 1.262 0.2152( 0.0020 1.50( 0.04
C6H6 2.120 0.1448( 0.0019 2.06( 0.06
C2H4 0.696 0.0012( 0.0008 0.64( 0.02
C4H6 2.380 0.3485( 0.0007 1.63( 0.04
C6H8 3.949 2.3537( 0.0021 4.27( 0.06

a Values compiled in ref 6. A factor of 1/6 included to account for
the difference in definition of polarization.bOptimized geometry from
Hartree-Fock calculations using 6-31G** basis sets. Polarizability
semiempirical calculations using implicit field and polynomial expan-
sions of variable degrees.

Figure 1. Comparison between ab initio (static) third-order polariz-
abilities and semiempirical/finite-field values, without core correction
(open squares) and with core correction (solid circles). Ab initio values
compiled by Shelton and Rice.6
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to compare our values with experimental values: third-harmonic
generation (THG) measurements of organic solvents performed
at two different wavelengths, THG measurements of substituted
benzenes (also in the liquid phase) measured at one wavelength
but extrapolated to static; EFISH measurements in the gas phase
at one wavelength and extrapolated to static; and time-resolved
optical Kerr response on three carbon-cage fullerenes. The first
set was chosen because information on two wavelengths allows
for a better extrapolation to static values. The second set was
selected to increase the number of points for comparison,
similarly measured (neat liquids, THG, at one of the two
wavelengths of the first set). The third group was selected
because it consists of measurements taken in the gas phase, thus
eliminating one possible cause of discrepancies (i.e., bulk
effects). The last group was chosen because of the large
dimensions of the molecules.
The THG measurements on organic solvents taken at two

laser wavelengths (1.907 and 1.064µm) were performed by
Kajzar and Messier.36 We have estimated the static value by
using the two-level approximation and solving a system of two
equations and two unknowns, whenever possible:

whereγω is the measured property at dynamic field of energy
ω andω0 is the resonance energy. When the measured value
at 1.907µm is larger than at 1.064µm, eq 7 is not applicable,
suggesting that these values are not reliable. If these experi-
mental values correspond to electronicγ, then the resonance
energy for these molecules would lie between the two laser
frequencies utilized, and that is not the case.
In addition, a single component of the polarization may be

written in the frequency domain as

Theλ factor depends on the definition of frequency-dependent
field and on the permutation symmetry of the experimental
technique.35 Since we are interested in the correlation between
the experimental values and our calculations, we will neglectλ
since it would not affect the correlation. The top portion of
Table 4 shows the experimental and calculated values for this
first group of selected organic solvents. The second group of
molecules we have chosen for comparison are monosubstituted
benzenes. THG measurements on these molecules were per-
formed by Cheng et al.37 at 1.91µm. The measurements were
extrapolated to static values using eq 7, and the calculated
HOMO-LUMO gap was normalized to theω0 of benzene. The
bottom portion of Table 4 contains this information.
Figure 2 depicts the correlation between the experimental

values and our calculations contained in Table 4. The values
for the first set of data are represented with open circles and
those for the second set with solid circles. For these liquids, a
simple linear regression gives a correlation coefficient of 0.91,
a slope of 0.38 with a standard deviation of 13%, and an
intercept of 0.48× 10-61 C m4 V-3 with a standard deviation
of 56%. The maximum spread for this calculation is shown by
dotted lines in Figure 2. When the regression line is forced
through the origin, the correlation coefficient becomes 0.99, with
a slope of 0.457 and standard deviation of 2%. This regression
line is represented in Figure 2 by a solid line.
Three facts leads us to conclude that the line forced through

the origin better represents the data: the large standard deviation

of the intercept of the simple regression line; the improvement
on the standard deviation of the slope when the line is forced
through the origin; and the improvement on the correlation
coefficient. Thus, there is no additive correction to be made to
the calculated values to reproduce the experimental values. On
the other hand, there is a factor corresponding to the inverse of
the slope of the line forced through the origin. Thus, we believe
that an adjustment factor of 2.19 would account for the bulk
effects in these organic liquids. This result may be compared
with a semiempirical study of the third-order polarizability of
donor-acceptor molecules, in particular monosubstituted ben-
zenes, performed by Matsuzawa and Dixon (Table 1 of ref 18).

γstatic) γω(ω0
2 - ω2)4/ω0

8 (7)

Pi ) µi + Rij(-ω1;ω1) Fj(ω1) +
κâijk(-ω1;ω2,ω3) Fj(ω2) Fk(ω3) +
λγijkl(-ω1;ω2,ω3,ω4) Fj(ω2) Fk(ω3) Fl(ω4) (8)

TABLE 4: Comparison of Experimental and Calculated
Average Static Molecularγ; Measurements of Third-Order
Generation (THG) in Neat Liquids Extrapolated to Static
Conditions (Units: 10-61 C m4 V-3)

incident radiation

liquid 1.907µm 1.064µm
extrapolated
to Static

present
calculations

A. From Measurements at Two Wavelengthsa

benzene 5.04 5.45 4.87 2.06
carbon tetrachloride 4.16 4.49 4.02 1.57
chloroform 2.81 3.35 2.60 1.21
dichloromethane 1.92 2.40 1.74 0.85
cyclohexane 3.74 4.11 3.58 2.07
n-hexane 5.16 4.25 NA 2.17
acetone 2.33 2.23 NA 1.16
methanol 1.08 1.03 NA 0.45
ethanol 1.84 1.57 NA 0.80
dimethylformamide 2.51 2.72 2.42 1.80

B. From Measurements at One Wavelengthb

benzene 4.83 4.66 2.06
toluene 5.69 5.50 2.61
anisole 5.94 5.74 2.80
aniline 6.69 6.46 2.89
dimethylaniline 10.03 9.69 4.03
phenylcyanide 5.32 5.14 3.27
benzaldehyde 6.56 6.34 3.00
nitrobenzene 7.06 6.82 2.60

aMeasurements by Kajzar and Messier.36 Extrapolated to static
conditions using eq 7 and a system of two equations and two unknowns.
bMeasurements by Cheng, Tam, Stevenson, Meredith, Rikken, and
Marder.37 Extrapolated to static conditions using eq 7 and the calculated
HOMO-LUMO gap normalized to theω0 value for benzene.

Figure 2. Correlation between experimental and calculated static third-
order polarizabilities of organic solvents. Third-harmonic-generation
(THG) measurements at 1.91 and 1.06µm wavelengths by Kajzar and
Messier36 and at 1.91µm wavelength by Cheng, Tam, Stevenson,
Meredith, Rikken, and Marder.37
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A simple linear regression between calculated and experimental
values for these compounds results in an additive correction of
5 × 10-61 C m4 V-3 and a factor of 1.20.
Measurements on four molecules in the gas phase were also

chosen for comparison, obtained using EFISH techniques and
694 nm radiation.38 The data are summarized in Table 5 and
depicted in Figure 3. The experimental values were extrapolated
to static using eq 7, and theω0 listed in Table 5. A simple
least-squares regression line of calculated versus experimental
values gives a correlation coefficient of 0.99, a slope of 0.87
with a standard deviation of 8%, and an intercept of 0.10×
10-61 C m4 V-3 with a standard deviation of 200%. A line
forced through the origin results in a regression line with
correlation coefficient of 1.00 and a slope of 0.899 with a
standard deviation of 0.7%. Figure 3 shows the maximum
spread of the simple regression relationship as two dotted lines
and the line corresponding to a 1:1 correlation as a solid line.
Although four points are a very small sample, the results are
encouraging. It should be noted that benzene and 1,3,5-
hexatriene have the same core correction, but they give
substantially differentγ values due to the large valence
contribution for the latter molecule.
The last group selected for comparison consists of three

carbon fullerenes: C60, C70, and C84. Measurements ofø(3)
(macroscopic third-order polarizabilities) for these molecules
were taken by Sun et al.,39 using the time-resolved optical Kerr
effect (OKE) in CS2 and 647 nm radiation. The valence
contributions to the static third-order polarizabilities were

recently published.15 Core effects, as described in this paper,
were added to the calculations. These corrections account for
79% of the value for C60, 69% of C84D2d, and 67% of C70 and
C84 D2. To compare roughly a macroscopic property with the
molecular property, we normalized the values with respect to
C60. One should consider that these molecules may have
somewhat different local field effects, molecular densities,
resonance enhancement effects, and thus different bulk effects
on the property. Figure 4 sketches the results. The figure seems
to indicate that the calculations were able to pick up trends,
although the number of points is too small to reach any
conclusion. In addition, the ratio between theγ values for C70
and C60 before the core correction is 2.20 but after the core
correction is 1.38. The OKE measurements by Sun et al.39 give
a ratio of 2.94. On the other hand, solution-phase EFISH
measurements by Wang and Cheng40 at 1.91µm gave a ratio
of 1.7 for these same two molecules. Finally, the average values
from DFT calculations for C60 and C70 (using SCF convergence
criteria of 10-10 and 10-14, based on energy, with no symmetry
constraints; Table III, ref 25) are 5.05× 10-61 and 9.04× 10-61

C m4 V-3, respectively. These values for C60 and C70 are closer
to our calculations of valence contributions (6.09× 10-61 and
11.21× 10-61 C m4 V-3, respectively) than to our values
including core contributions: 2.43× 10-60 and 3.36× 10-60

C m4 V-3, respectively. The ratio between the DFT values for
C70 with respect to C60 is 1.79.

3. Conclusions

Due to computational restrictions, it appears that semiem-
pirical techniques are required for predicting third-order polar-
izabilities of very large molecules. Semiempirical calculations
utilizing the finite-field formalism often result in large numerical
instabilities. In this paper, a method of estimating quantitatively
the numerical instabilities has been delineated. In addition, the
method allows qualitatively checking for those instabilities by
comparing terms related through Kleinman symmetry involving
interchange of the first index.
Thus, it was determined that semiempirical polarization

calculations may be performed on optimized geometries ob-
tained from different methods (semiempirical, ab initio, mo-
lecular mechanics). In addition, it was shown that if appropriate
parameters are chosen, either external or implicit fields may be

TABLE 5: Comparison of Experimental and Calculated
Average Static Molecularγ; EFISH Measurements in the
Gas Phase at 694 nm, Extrapolated to Static Conditions
(Units: 10-61 C m4 V-3)

compound
transition
energy (eV)

experimental
at 694 nma

extrapolated
to Staticb

present
calculations

ethylene 7.65c 0.94 0.75 0.63
all-trans-1,3-

butadiene
5.87d 2.85 1.93 1.67

all-trans-1,3,5-
hexatriene

4.93c 9.32 5.29 4.67

benzene 6.9e 2.55 1.93 2.06

a Vapor-phase EFISH measurements by Ward and Elliott.38 b Ex-
trapolation to static using eq 7.cReference 41.dReference 42.eRef-
erence 43.

Figure 3. Correlation between experimental and calculated static third-
order polarizabilities of ethylene, 1,3-butadiene, 1,3,5-hexatriene, and
benzene in the gas phase. EFISH measurements at 694 nm by Ward
and Elliott.38

Figure 4. Correlation between experimental macroscopic measure-
ments of the third-order polarizability for three carbon-cage fullerenes
and the calculated molecular static values, normalized to C60. The OKE
measurements obtained by Sun et al.39
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used; a small difference in the uncertainty of theγ values favors
the latter. By comparingγ calculations performed as described
in this paper with ab initio calculations, core corrections may
be extracted. Finally, families of molecules can be studied to
obtain adjustment parameters to account for bulk effects,
providing a tool for the prediction ofγ values for other members
of the family.
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